ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы программно-технические «Цитрон»

Назначение средства измерений

Комплексы программно - технические «Цитрон» (далее - комплексы) предназначены для измерений и преобразований силы и напряжения постоянного тока, поступающих от датчиков, сбора, обработки и передачи преобразованной информации в цифровом виде в центр сбора данных.

Описание средства измерений

Принцип действия комплексов основан на измерении и преобразовании силы и напряжения постоянного тока, поступающих от датчиков в цифровой вид и передачи измерительной информации в центр сбора данных для отображения и архивирования.

Комплекс состоит из компьютера в обычном или промышленном исполнении и подключенных к нему по магистральной линии связи контроллеров сбора и обработки данных (далее приборы КСО) в количестве до 30 шт. К каждому прибору КСО может быть подключено от 1 до 48 датчиков силы и напряжения постоянного тока и от 1 до 16 контактных датчиков. На компьютер установлено специализированное программное обеспечение, которое осуществляет циклический опрос, входящих в состав комплекса приборов КСО, получает от них информацию и после преобразования отображает её на экране компьютера в форме удобной оператору.

Полученная информация архивируется в базах данных и проверяется на выход за пределы допустимых значений. При этом для привлечения внимания оператора формируется аварийная сигнализация (визуальная на экране компьютера и звуковая). Информация обо всех аварийных событиях архивируется в специальной базе данных аварийных событий.

Программное обеспечение комплекса является настраиваемым под конкретные задачи пользователя. При настройке пользователь может задать количество приборов КСО в комплексе и определить индивидуальную настройку для каждого измеряемого параметра:

- название параметра (полное и сокращенное);
- единица измерения;
- параметры преобразования в физическую величину (коэффициент масштабирования и смещения);
 - параметры для графического отображения измеряемых величин;
 - параметры аварийной сигнализации (максимальные и минимальные значения).

По устойчивости к климатическим воздействиям комплексы соответствуют исполнению В4 по ГОСТ Р 52931-2008.

Степень защиты от проникновения воды и внешних твердых предметов соответствует IP30 по Γ OCT 14254-2015.

Общий вид комплекса, схема пломбировки от несанкционированного доступа представлены на рисунке 1.

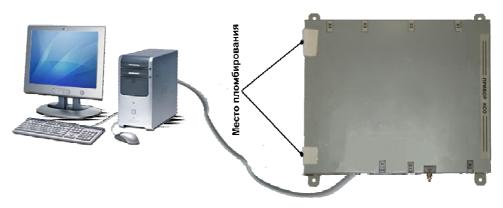


Рисунок 1 - Общий вид комплекса, схема пломбировки от несанкционированного доступа

Программное обеспечение

Идентификационные данные программного обеспечения «ПО центра сбора данных», используемого в составе комплексов, указаны в таблице 1.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения комплексов

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ASY_INO.EXE
Номер версии ПО	1.15.6
Цифровой идентификатор ПО	2570240 B
Алгоритм вычисления цифрового идентификатора ПО	CRC32

Метрологические и технические характеристики

1аолица 2 - Метрологические характеристики	
Наименование характеристики	Значение
Диапазоны измерений:	
- силы тока, мА	от 0 до 5
	от 0 до 20
	от 4 до 20
- напряжения, В	от -10 до +10
Пределы допускаемой основной приведенной к диапазону	±0,25
измерений погрешности, %	
Пределы допускаемой дополнительной приведенной к диапазону	
измерений погрешности при изменении температуры	±0,12
окружающего воздуха от нормальной на каждые 10 °C, %	
Пределы допускаемой дополнительной приведенной к диапазону	
измерений погрешности при отклонении напряжения питания	±0,12
от номинального, %	

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение
Параметры питания прибора КСО:	
- напряжение постоянного тока, В	27±4
- напряжение переменного тока, В	22±4
- частота, Гц	50±1

Наименование характеристики	Значение
Параметры питания компьютера:	
- напряжение переменного тока, В	от 187 до 242
- частота, Гц	50±1
Потребляемая мощность прибора КСО, Вт, не более	5,5
Максимальное количество измерительных каналов (входов)	1440
Максимальное количество информационных каналов (входов)	480
Условия эксплуатации:	
- температура окружающего воздуха, °С	от +5 до +50
- относительная влажность, %, не более	80
Габаритные размеры прибора КСО, мм, не более	
- высота	315
- ширина	305
- длина	40
Масса прибора КСО, кг, не более	5
Средний срок службы, лет	6
Средняя наработка на отказ, ч	75 000

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность комплекса

Наименование	Обозначение	Количество
Прибор КСО	АВЛБ424149.002	от 1 до 30 шт. (определяется заказчиком)
Преобразователь для шины PCI RS-232/RS-422/RS-485	CP-114 I MOXA (CP-132S MOXA)	1 шт.
ПО центра сбора данных	АВЛБ 0003-01	1 экз.
Паспорт	АВЛБ424149.001ПС	1 экз.
Руководство по эксплуатации	АВЛБ424149.001РЭ	один экз. на партию из 10 шт. или по заказу в один адрес
Методика поверки	МП 124-221-2017	1 экз.
Паспорт на прибор КСО	АВЛБ 424149.002 ПС	от 1 до 30 экз.
Персональный компьютер (обычное или промышленное исполнение)		1 шт.

Поверка

осуществляется по документу МП 124-221-2017 «Комплексы программно - технические «Цитрон». Методика поверки», утвержденному ФГУП «УНИИМ» 22.10.2017 г.

Основные средства поверки:

- рабочий эталон 3 разряда единицы напряжения постоянного электрического тока по ГОСТ 8.027-2001 в диапазоне значений от 0 до 10 В;
- рабочий эталон 2 разряда единицы силы постоянного электрического тока по ГОСТ 8.022-91 в диапазоне значений от 0 до 20 мА.

Допускается применение аналогичного средства поверки, обеспечивающего определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) паспорт комплекса.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к комплексам программно-техническим «Цитрон»

ГОСТ 8.022-91 Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до $30~\mathrm{A}$

ГОСТ 8.027-2001 Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ТУ АВЛБ.424149.001 Комплексы программно-технические «Цитрон». Технические условия

Изготовитель

Закрытое акционерное общество «Научно-производственное предприятие «Электронные информационные системы»)

ИНН 6662094019

Адрес: 620075, г. Екатеринбург, ул. Мамина - Сибиряка, 145

Телефон: (343)-350-57-35 Факс: (343)-263-73-68 Web-сайт: http:eisystem.ru E-mail: main@eisystem.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Уральский научноисследовательский институт метрологии» (ФГУП «УНИИМ»)

Адрес: 620075, г. Екатеринбург, ул. Красноармейская, д. 4

Телефон: (343) 350-26-18 Факс: (343) 350-20-39 E-mail: uniim@uniim.ru

Аттестат аккредитации Φ ГУП «УНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311373 от 10.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2018 г.